Hydrogen-bond basicity of the sulfonyl group. The case of strongly basic sulfonamidates $RSO_2 \bar{N} \dot{N} Me_3$

PERKIN

Aurélie Chardin,^a Christian Laurence,^a Michel Berthelot^a and David G. Morris^b

^a Laboratoire de Spectrochimie, Faculté des Sciences et des Techniques, 44072 Nantes Cedex 03, France ^b Department of Chemistry, University of Clasgow, Clasgow, UK C12 800

^b Department of Chemistry, University of Glasgow, Glasgow, UK G128QQ

The hydrogen-bond basicity scale pK_{HB} (logarithm of the formation constant of 4-fluorophenol-base complexes in CCl₄) has been determined for 13 sulfonyl bases, and correlated to the infrared shifts, on complexation, of the v(OH) vibrations of 4-fluorophenol and methanol. In 1:1 complexes, oxygen complexation is observed, even for sulfonamides, sulfamides and sulfonamidates. Substitution on the

sulfonyl group by N=CHNMe₂, N=SMe₂ or $\overline{NNMe_3}$ gives the strongest sulfonyl bases known. Since sulfonamides are less basic than sulfones, the electron-donating mechanism of $\overline{NNMe_3}$ to SO₂ in sulfonamidates is probably mainly inductive.

It is well known that amides are much stronger Lewis bases than ketones,^{1.2} this is explained as a result of delocalization of the nitrogen lone pair electrons, giving a higher electron density on the carbonyl oxygen. In the same vein, cyanamides give considerably stronger complexes with Lewis bases than do nitriles.^{1,3-5} On the contrary, the Lewis basicity of sulfonamides (and sulfinamides) is slightly lower than for sulfones (and sulfoxides).⁶⁻¹² This shows that the analogue of the classical carboxamide resonance is insignificant.^{7.9,11,12}

A reason might be 6 that the d-orbitals on the sulfur act as a 'sink' for the $p\pi$ electrons donated from the nitrogen.

Amidates 1, cyanamidates 2 and sulfonamidates 3 are dipolar

ions containing a cationic nitrogen bonded to an anion derived respectively from an amide, a cyanamide and a sulfonamide. We have recently shown ^{13,14} that amidates 1 and cyanamidates 2 are still much stronger bases than amides and cyanamides respectively, on the hydrogen-bond basicity scale pK_{HB} . This scale is based on the formation of 1:1 hydrogen-bonded complexes of a base B with a reference hydrogen-bond donor under standard conditions of solvent and temperature. For technical reasons, the pK_{HB} scale is constructed from 4-fluorophenol in carbon tetrachloride at 298 K [eqns. (1)–(3)].

$$B + 4 - FC_6H_4OH \underbrace{CCl_4.25 \, \circ C}_{4} - FC_6H_4OH \cdots B \quad (1)$$

 $K_{\rm HB}/{\rm dm^3\ mol^{-1}} =$

$$[4-FC_6H_4OH\cdots B]/[B][4-FC_6H_4OH]$$
 (2)

$$pK_{\rm HB} = \log_{10} K_{\rm HB} \tag{3}$$

The exceptionally high basicity of amidates 1 and cyanamidates 2 does not originate in the fixation of 4-

fluorophenol to the anionic nitrogen, since we have shown $^{13.14}$ that the fixation site remains the oxygen atom in amidates and the sp N=C nitrogen in cyanamidates, but in a much more efficient electron-donating effect of the $NNMe_3$ substituent rather than its NR₂ counterpart.

In this work, we determine for the first time the hydrogenbonding site and basicity of the sulfonamidates 3 with the hope of discovering sulfonyl bases that are stronger than sulfonamides and sulfones. We chose to study *N*-trimethylammoniooctanesulfonamidate (OctSO₂NNMe₃) in the aliphatic series, *N*-trimethylammoniotoluene-*p*-sulfonamidate (*p*-MeC₆H₄SO₂NNMe₃) in the aromatic one, and *N*-(*p*tolylsulfonylimino)dimethyl- λ^4 -sulfane (*p*-MeC₆H₄SO₂N=S-Me₂) which is related to sulfonamidates in so far as the N=S π bonding appears to be highly ionic in character.¹⁵

Equilibrium constants have previously been measured for the complexation of sulfates,¹⁶ sulfonates,¹⁶ sulfones^{8-10,12,16-18} and sulfonamides^{6-12,18} with alcohols and phenols, but not with 4-fluorophenol. For the sake of comparison, we therefore decided to measure pK_{HB} for these sulfonyl bases. In particular the sulfonamide iminologue PhSO₂N=CHNMe₂, which was previously found¹⁹ to be more basic than the sulfonamide PhSO₂NMe₂, was re-studied.

In addition to the thermodynamic scale pK_{HB} , we also measured the complexation induced shifts of the OH stretching vibration of methanol and 4-fluorophenol. These Δv (OH) are generally considered as spectroscopic scales of hydrogen-bond basicity. Within a family of bases, the thermodynamic pK_{HB} and spectroscopic Δv (OH) scales are often well correlated,²⁰ provided the site of hydrogen-bond fixation is not sterically hindered, and remains unchanged within the series.^{2,4,21-23}

The measurements were performed both in CCl₄ and CH₂Cl₂·CCl₄ is the standard solvent for establishing the pK_{HB} scale, but the three sulfonamidates and dimethyl sulfone are not sufficiently soluble in this solvent. Consequently the hydrogenbonded complexes of 4-fluorophenol [eqn. (1)] and methanol were also studied in CH₂Cl₂. Correlations between data in CH₂Cl₂ and CCl₄ were established in order to calculate the pK_{HB} values of these four sulfonyl bases.

Experimental

Sulfonyl bases **4–12** in Table 1 were Aldrich compounds carefully purified and dried by standard procedures. Methanol,

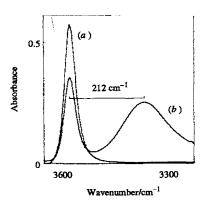


Fig. 1 IR bands of (a) the free OH group of 4-fluorophenol (3×10^{-3} mol dm⁻³ in CH₂Cl₂) and (b) the hydrogen-bonded OH group of 4-fluorophenol-*p*-MePhSO₂N=SMe₂ complex (6×10^{-2} mol dm⁻³ of *p*-MePhSO₂N=SMe₂ is added to the 4-fluorophenol solution). $\Delta v'_2$ (OH) = 212 cm⁻¹. The absorbance decrease of the free OH band allows a Beer–Lambert determination of the complex concentration at equilibrium, and the K'_{HB} calculation.

 CCl_4 and CH_2Cl_2 were spectroscopic grade compounds dried on molecular sieves.[†] 4-Fluorophenol was purified by sublimation. The preparation of solutions and the filling of cells were carried out in a dry glove-box.

Compound 13 was synthesized as described previously²⁴ from dimethylformamide dimethyl acetal and benzenesulfonamide and recrystallized from methanol. Compound 14 was synthesized out by the method B of King.²⁵ The method of Wawzonek and Meyer²⁶ was followed for the synthesis of compounds 15 and 16.

Infrared measurements were carried out with a Fourier transform spectrometer Bruker IFS 48 by selecting 1 or 2 cm⁻¹ resolution. Measurements of overlapping bands were performed by a mathematical decomposition and/or deconvolution programmes included in the OpusTM Bruker software. A 1 cm Infrasil cell was thermostatted at 25 \pm 0.1 °C for thermodynamic measurements in CCl₄ and CH₂Cl₂. A 4 cm cell was necessary for the $\Delta\nu$ (OH) measurements of compounds slightly soluble in CCl₄. The study of the SO₂ stretching was performed in CaF₂ cells of various pathlengths according to solubility and solvent transparency.

The FT-IR spectroscopic method for measuring the formation constants $K_{\rm HB}$ has been described previously.^{4,23} The very low concentration of 4-fluorophenol (*ca.* 10⁻³ mol dm⁻³) and high concentration of sulfonyl bases (in a molar ratio ranging from 1:10 to 1:30) make negligible the probability of two OH bonded to one SO₂, and generally of complexes of higher stoichiometry than 1:1. Values of $pK_{\rm HB}$ are probably accurate to better than ± 0.03 .

The complexation induced shifts of the OH stretching vibration of methanol and 4-fluorophenol are defined as: $\Delta v_1 = 3644 - v_1(OH \cdots)$ for methanol-base complexes in CCl₄; $\Delta v_2 = 3614 - v_2(OH \cdots)$ for 4-fluorophenol-base complexes in CCl₄; $\Delta v'_1 = 3625 - v'_1(OH \cdots)$ for methanol-base complexes in CH₂Cl₂ and $\Delta v'_2 = 3585 - v'_2(OH \cdots)$ for 4-fluorophenol-base complexes in CH₂Cl₂.

Results

The pK_{HB} (in CCl₄), log K'_{HB} (in CH₂Cl₂), and Δv (OH) basicity scales are reported in Table 1. The fifth column of this table is a linear transform of pK_{HB} , calculated by eqn. (4), which is used in

$$\beta_2^{\rm H} = (pK_{\rm HB} + 1.1)/4.636 \tag{4}$$

linear solvation energy relationships and for the prediction of the stability of many hydrogen-bonded complexes.²⁷ A correlation analysis of these scales leads to the following results. We first observe that the $\Delta v(OH)$ of methanol is highly correlated to the $\Delta v(OH)$ of 4-fluorophenol, both in CCl₄ [eqn. (5)] and in CH₂Cl₂ [eqn. (6)]. This shows that the basicity

$$\Delta v_1 = 0.594 \,\Delta v_2 - 18.2 \quad n = 11 \quad r = 0.998 \quad s = 2 \,\mathrm{cm}^{-1}$$
(5)

$$\Delta v'_1 = 0.540 \ \Delta v'_2 - 12.1 \quad n = 8 \quad r = 0.999 \quad s = 1.5 \ \mathrm{cm}^{-1} \tag{6}$$

sequence of the sulfonyl group is the same towards MeOH and 4-FC₆H₄OH. In these equations, *n* is the number of data points, *r* the correlation coefficient and *s* the standard deviation of the estimate.

Moreover eqns. (7)-(9) show that the basicity sequence does

$$\Delta v_1 = 1.274 \,\Delta v'_1 - 13.0 \quad n = 6 \quad r = 0.995 \quad s = 4 \,\mathrm{cm}^{-1} \tag{7}$$

$$\Delta v_2 = 1.106 \,\Delta v'_2 - 7.4 \quad n = 7 \quad r = 0.994 \quad s = 8 \,\mathrm{cm}^{-1} \tag{8}$$

$$pK_{\rm HB} = 1.029 \log K'_{\rm HB} + 0.97 \quad n = 4 \quad r = 0.966 \quad s = 0.09 \tag{9}$$

not change when CCl₄ is replaced by CH₂Cl₂ either for the spectroscopic [eqns. (7) and (8)] or for the thermodynamic [eqn. (9)] scale. Eqn. (9) is for a limited number of points since $K'_{\rm HB}$ could be measured neither for the too weakly basic sulfate and sulfonate, nor for the insoluble sulfonamidates and Me₂SO₂. However, we believe that it is significant since a similar linear free energy relationship between $pK_{\rm HB}$ and log $K'_{\rm HB}$ has already been found valid for seven oxygen bases.²⁸

The correlations of eqns. (10)-(13) between spectroscopic

$$\log K'_{\rm HB} = 0.017\ 16 \quad \Delta v'_1 - 0.73 \quad n = 8 \quad r = 0.996$$
$$s = 0.05 \quad (10)$$

log
$$K'_{\rm HB} = 0.009\ 28 \ \Delta v'_2 - 0.94 \ n = 8 \ r = 0.996$$

 $s = 0.05 \ (11)$

$$pK_{HB} = 0.016\ 72 \quad \Delta v_1 + 0.175 \quad n = 9 \quad r = 0.985$$

 $s = 0.05 \quad (12)$

$$pK_{\rm HB} = 0.009\ 95 \quad \Delta v_2 - 0.136 \quad n = 9 \quad r = 0.988$$
$$s = 0.05 \quad (13)$$

and thermodynamic basicity scales are the most useful. This allows us to confirm that the oxygen atoms of SO₂ are the common hydrogen-bonding site for the sulfonyl bases 4–16 (*vide infra*) and also to calculate pK_{HB} for insoluble compounds 7 and 14–16. The pK_{HB} calculations will be illustrated for the sulfonamidates 15 and 16. The sulfonamidate 16 is sufficiently soluble in CCl₄ to measure $\Delta v_1 = 163$ and $\Delta v_2 = 305$ cm⁻¹. The introduction of these values in eqns. (12) and (13) give $pK_{HB} = 2.90$. The sulfonamidate 15 is soluble only in CH₂Cl₂. We get $\Delta v'_1 = 125$ and $\Delta v'_2 = 255$ cm⁻¹ and calculate $\Delta v_1 =$ 146 cm⁻¹ from eqn. (7) then $pK_{HB} = 2.62$ from eqn. (12), and $\Delta v_2 = 275$ cm⁻¹ from eqn. (8) then $pK_{HB} = 2.60$ from eqn. (13). Table 1 reports the mean of these two values.

Discussion

Hydrogen-bonding site

In addition to the oxygens of the SO_2 group, the ether oxygen(s) of the sulfate 4 and sulfonate 5, the nitrogen(s) of sulfonamides,

[†] In CH₂Cl₂, no attempt was made to remove the ethylenic stabilizer which cannot influence eqn. (1), due to its low concentration (100 ppm) and very low basicity ($K_{\rm HB}$ ca. 0.2 dm³ mol⁻¹).

No.	No. Compound	Formula	рК _{нв}	$\beta_2^{\rm H}$	CCI₄	CCI4	CH ₂ Cl ₂	CH ₂ Cl ₂	CH ₂ Cl ₂
4	Diethyl sulfate	EtOSO,OEt	0.80	0.41	35	16	e	e	79
S	Ethyl methanesulfonate	MeSO,OEt	1.02	0.46	52	119	в	в	J
9	Diphenyl sulfone	PhSO, Ph	1.21	0.50	63	137	0.22	59	131
2	Dimethyl sulfone	MeSO, Me	1.40^{b}	0.54	74	152	0.47	66.5	145
×	Tetramethylene sulfone	CH2CH2CH2CH2SO2	1.47	0.55	77	157	f	f	f
6	Dibutyl sulfone	BuSO, Bu	1.52	0.57	86	172	0.63	80	167
10	N,N-Dimethylbenzenesulfonamide	PhSO _. NMe,	1.19	0.49	61	134	f	f	J
11	N,N-Dimethylmethanesulfonamide	MeSO ₂ NMe ₂	1.30	0.52	68	142	0.32	61	140
12	N,N,N',N'-Tetraethylsulfamide	Et,NSO,NEI,	1.47	0.55	77	168	f	f	f
13	N,N-Dimethyl-N'-phenylsulfonylformamidine	PhSO ₂ N=CHNMe ₂	1.819	0.63	92	188	0.75	87	183
14	N -(p -Tolylsulfonylimino(dimethyl). λ^4 -sulfane)	<i>p</i> -MeČ ₆ H ₄ SO ₂ N=SMe ₂	2.14 ^b	0.70	120°	227 ⁴	1.05	104	212
15	N-Trimethylammoniotoluene-p-sulfonamidate	<i>p</i> -MeC ₆ H ₄ SO ₂ Ñ [†] Me ₃	2.61 ^b	0.80	146°	275 ⁴	1.47	125	255
16	N-Trimethylammoniooctanesulfonamidate	OctSO ₂ NNMe ₃	2.90 ^b	0.85	163	305	1.55	136	275

Table 2 Stretching SO₂ wavenumbers and their shifts Δv on complexation^{*a.b*}

٦	No.	Compound	V _{as}	v _s	$\Delta v_{\rm as}$	$\Delta v_{\rm s}$	Solvent	HBD ^c
	7	MeSO ₂ Me	1312.6 1325.5	d d	9 9	_	CH ₂ Cl ₂ CCl ₄	4-FC ₆ H₄OH (CF ₃)₂CHOH ^e
1	1	MeSO ₂ NMe ₂	d 1350.0 d	1147.2 d 1159.8	10	5 7	$\begin{array}{c} CH_2Cl_2\\ CCl_4\\ CCl_4\end{array}$	4-FC ₆ H₄OH 4-FC ₆ H₄OH (CF ₃)₂CHOH ^e
1	3	PhSO ₂ N=CHNMe ₂	1350.3	1155.3	2	4	CCl ₄	(CF ₃) ₂ CHOH ^e
1	5	<i>p</i> -MeC ₆ H ₄ SO ₂ NN ⁺ Me ₃	1255.0	1132.9	5	6	ClCH ₂ CH ₂ Cl ^e	4-FC ₆ H₄OH
1	6	$OctSO_2 NN Me_3$	d	1112.5		4	ClCH ₂ CH ₂ Cl ^e	4-FC ₆ H ₄ OH

 $a \operatorname{cm}^{-1}$. $b \Delta v = v$ (free SO₂) – v (hydrogen-bonded SO₂). Approximate values because of band overlapping. ^c Hydrogen-bond donor. ^d Not studied because of solvent and/or HBD transparency. ^e Chosen for solubility and/or transparency reason(s).



Fig. 2 Comparison of the thermodynamic and spectroscopic hydrogen-bond basicity scales for the family of sulfonyl bases. Numbers refer to Table 1. The bases with the SO_2N moiety and the sulfones occur on the same line of eqn. (11).

sulfamide and, more likely, the anionic nitrogen of sulfonamidates, are potential acceptor sites for hydrogen-bond formation. However, it appears that the oxygens of the sulfonyl group are the only major site for compounds 4-16 since we observe: (i) one symmetrical band (Fig. 1) for the stretching of the hydrogen-bonded OH group of methanol and 4-fluorophenol. This indicates one kind of complex; (ii) excellent relationships for eqns. (10)-(13) between the thermodynamic scales, pK_{HB} or log K'_{HB} , and the spectroscopic scales, $\Delta v(OH)$ or $\Delta v'(OH)$, as illustrated in Fig. 2. Such relationships can exist only if compounds 4-16 have the same acceptor site in common.^{2,4,20-23} This common acceptor site is necessarily the SO_2 group since it is the only site of sulfones 6–9 that obeys eqns (10)–(13); (iii) lowering of the SO_2 stretching wavenumber on complexation (Table 2). The lowering of the XO stretching wavenumber is a well defined and robust criterion for confirming oxygen complexation in the hydrogen-bonded complexes of XO bases, and especially SO bases, 6,20,29 and (iv) in the case of 13, raising of the C=N stretching wavenumber from 1623 cm⁻¹ in the free molecule to 1628 cm⁻¹ in its complex with hexafluoropropan-2-ol. The fixation of this hydrogenbond donor on the imino nitrogen would have decreased the v(C=N) wavenumber.³⁰ Similarly the v(C=N) of Me₂NCH=NC-SPh increases by 5 cm⁻¹ on sulfur complexation with 4-fluorophenol.31

We do not know if the hydrogen bond that has been created on the sulfonyl group is (a) two- or (b) three-centred. Species (b) has been speculated for the complex of tetramethylene sulfone with phenol.¹⁷ However, a species similar to (a) has been demonstrated for the sulfur dioxide-hydrogen fluoride

hydrogen-bonded complex.³² Curiously, when extending the $pK_{HB} - \Delta v$ correlations of eqns. (12) and (13) to SO bases,

it is found ³³ that sulfoxides, sulfites and sulfinamides stand approximately 0.3 pK unit below the lines of eqns. (12) and (13), which is the log 2 statistical correction to be applied to the formation of SO_2 complexes with structure (a) for a correct comparison with SO bases.

Influence of molecular structure on the hydrogen-bond basicity of the SO_2 group

Consider first the compounds 4-12 bearing the 'well behaved' substituents Me, Bu, Ph, NMe₂ and OEt on the sulfonyl group. These substituents have well known³⁴ field-inductive and resonance substituent constants, σ_F and σ_R^+ . We observe that sulfonamides 10 and 11 are slightly less basic than sulfones 6-9. In terms of the classical inductive and resonance effects on basicity, this means that the NMe₂ substituent does not donate electrons to the oxygens of the sulfonyl group by its strong resonance effect ($\sigma_R^+ = -0.64$), but withdraws electrons by its weak inductive effect ($\sigma_F = +0.10$). This sulfonamide behaviour brings to light the importance of inductive effects in this series of compounds, and, indeed, we find a modest but statistically significant correlation between pK_{HB} and $\Sigma \sigma_F (n = 8, r = 0.85; r = 0.92$ if we exclude the sulfamide 12).

In compounds 13–16, there are no σ constants known for the substituents N=CHNMe₂, N=SMe₂ and $\bar{N}^{+}Me_3$.‡ However, our results show that these substituents are strong electron-donors to a SO₂ group, since they produce 'super-basic' sulfonyl bases. In fact alkyl sulfonamidates are the strongest sulfonyl bases presently known, and exceed dimethyl sulfoxide, on the pK_{HB} scale. This extends to the SO₂ function our previous findings that N=CHNMe₂ is a stronger electron-donor than NMe₂, ⁵ and that $\bar{N}^{+}Me_3$ is the strongest neutral electron-donor substituent presently known.^{13.14} However we previously had in mind that resonance was the main electron-donating mechanism (see the resonant forms below, where A is a π electron-attracting function).

$$Me_2NCH=NA \longleftrightarrow Me_2\bar{N}=CHN=\bar{A}$$
$$Me_3\bar{N}\bar{N}A \longleftrightarrow Me_3\bar{N}N=\bar{A}$$

In the present results the sulfonamide behaviour and its corollary, the pK_{HB} vs. $\Sigma \sigma_F$ correlation, indicate that the electron-donating mechanism of the N=CHMe₂, N=SMe₂ and $\bar{N}NMe_3$ substituents to the SO₂ function is mainly inductive. As far as the nitrile and carbonyl functions are concerned, the question of percentage of induction and resonance in the overall electron-donating effect of N=CHNMe₂, N=SMe₂ and $\bar{N}NMe_3$ remains open. The lone pair–lone pair repulsion effect also

[‡] We thank a referee for the following comment: 'while σ -values for N=CHNMe₂ may not be known, one might note that values of $\sigma_{\rm F} = -0.01$ and $\sigma_{\rm R} = -0.37$ have been reported for N=C(NH₂)₂ (A. Heesing and W. Schmalt, *Chem. Ber.*, 1978, 111, 320). A negative $\sigma_{\rm F}$ is particularly remarkable and of some relevance in this context.'

plays a great role on basicity.¹⁸ It is not yet understood how this effect is shared in the inductive-resonance separation.

Finally we note the position of the newly studied substituent N=SMe₂ near $\overline{NNMe_3}$ in the electron-donating sequence (towards a SO₂ function): $NNMe_3 > N=SMe_2 > N=CHN$ - $Me_2 > NMe_2$ This similarity of $NNMe_3$ and N=SMe_2 in enhancing the basicity of the SO₂ function, indicates a significant contribution of the resonant form \bar{N} SMe₂ and confirms dipole moment results¹⁵ on PhC(O)N=SMe₂, suggesting the S=N π bonding to be highly ionic in character, ca. 40%.

References

- 1 P. C. Maria and J. F. Gal, J. Phys. Chem., 1985, 89, 1296.
- 2 J. Y. Le Questel, C. Laurence, A. Lachkar, M. Helbert and M. Berthelot, J. Chem. Soc., Perkin Trans. 2, 1992, 2091.
- 3 P. C. Maria, J. F. Gal and R. W. Taft, New J. Chem., 1987, 11, 617.
- 4 M. Berthelot, M. Helbert, C. Laurence and J. Y. Le Questel, J. Phys. Org. Chem., 1993, 6, 302.
- 5 M. Berthelot, M. Helbert, C. Laurence, J. Y. Le Questel, F. Anvia and R. W. Taft, J. Chem. Soc., Perkin Trans. 2, 1993, 625.
- 6 H. Möllendal, J. Grundnes and P. Klaboe, Spectrochim. Acta, Part A, 1968, 24, 1669.
- 7 M. Jarva, M. Saastamoinen and P. O. I. Virtanen, Finn. Chem. Lett., 1974, 169.
- 8 P. Ruostesuo and J. Karjalainen, Finn. Chem. Lett., 1979, 210.
- 9 P. Ruostesuo and J. Karjalainen, Acta Chem. Scand., Ser. A, 1979, 33, 765.
- 10 J. Karjalainen and P. Ruostesuo, Finn. Chem. Lett., 1980, 169.
- 11 P. Ruostesuo and J. Karjalainen, Z. Phys. Chem. (Wiesbaden), 1981, 127.139.
- 12 P. Ruostesuo and J. Karjalainen, Spectrochim. Acta, Part A, 1981, 37. 535.
- 13 A. Chardin, M. Berthelot, C. Laurence and D. G. Morris, J. Phys. Org. Chem., 1994, 7, 705.

- 14 A. Chardin, M. Berthelot, C. Laurence and D. G. Morris, J. Phys. Org. Chem., 1995, 8, 626.
- H. Lumbroso, Ch. Liégeois, D. G. Morris and J. D. Stephen, Tetrahedron, 1978, 34, 557.
- 16 P. Biscarini, G. Galloni and S. Ghersetti, Spectrochim. Acta, 1964, 20, 267.
- 17 R. S. Drago, B. Wayland and R. L. Carlson, J. Am. Chem. Soc., 1963, **85**, 3125.
- 18 M. H. Abraham, P. P. Duce, D. V. Prior, D. G. Barratt, J. J. Morris and P. J. Taylor, J. Chem. Soc., Perkin Trans. 2, 1989, 1355.
- 19 C. Laurence, M. Berthelot, E. D. Raczynska, J. Y. Le Questel, G. Duguay and P. Hudhomme, J. Chem. Res. Synop., 1990, 250.
- 20 T. Gramstad, Spectrochim. Acta, 1963, 19, 829. 21 C. Laurence, M. Berthelot, M. Luçon and D. G. Morris, J. Chem.
- Soc., Perkin Trans. 2, 1994, 491.
- 22 F. Besseau, C. Laurence and M. Berthelot, J. Chem. Soc., Perkin Trans. 2, 1994, 485.
- 23 E. D. Raczynska, C. Laurence and P. Nicolet, J. Chem. Soc., Perkin Trans. 2, 1988, 1491
- 24 J. Oszczapowicz and E. D. Raczynska, Pol. J. Chem., 1983, 57, 419.
- 25 C. King, J. Org. Chem., 1960, 25, 352.
- 26 S. Wawzonek and D. Meyer, J. Am. Chem. Soc., 1954, 76, 2918.
- 27 M. H. Abraham, *Chem. Soc. Rev.*, 1993, **22**, 73. 28 L. Joris, J. Mitsky and R. W. Taft, *J. Am. Chem. Soc.*, 1972, **94**, 3438.
- 29 C. A. L. Filgueiras and O. G. F. Rocha, Tetrahedron, 1982, 38, 1213.
- 30 E. D. Raczynska, C. Laurence and M. Berthelot, Can. J. Chem., 1992, 70, 2203.
- 31 C. Laurence, M. Berthelot, J. Y. Le Questel and M. J. El Ghomari, J. Chem. Soc., Perkin Trans. 2, 1995, 2075.
- 32 A. C. Legon and D. J. Millen, Chem. Soc. Rev., 1987, 16, 467.
- 33 M. Berthelot and C. Laurence, unpublished results.
- 34 C. Hansch, A. Leo and R. W. Taft, Chem. Rev., 1991, 91, 165.

Paper 5/08357E Received 28th December 1995 Accepted 30th January 1996